The federal agency announced the Software-Tailored Architecture for Quantum co-design (STAQ) project. Physicists, engineers, computer scientists, and other researchers from Duke and six other universities (including MIT and University of California-Berkeley) will band together to embark on the five-year, $15 million mission.
The goal is to create the world’s first practical quantum computer — one that goes beyond a proof-of-concept and actually outperforms the best classical computers out there — from the ground up.
A little background: there are a few key differences between a classical computer and a quantum computer. Where a classic computer uses bits that are either in a 0 or 1 state, quantum bits, or qubits, can also be both 1 and 0 at the same time. The quantum circuits that use these qubits to transfer information or carry out a calculation are called quantum logic gates; just as a classic circuit controls the flow of electricity within a computer’s circuitry, these gates steer the individual qubits via photons or trapped ions.
In order to develop quantum computers that are actually useful, scientists need to figure out how to improve both hardware we use to build the physical devices, and the software we run on them. That means figuring out how to build systems with more qubits that are less error-prone, and determining how to sort out the correct responses to our queries when we get lots of noise back with them. It’s likely that part of the answer is building automated tools that can optimize how certain algorithms are mapped onto the specific hardware, ultimately tackling both problems at once.